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Abstract

Insectivorous birds have ecologically important effects on prey abundance,

behavior, and evolution, and through top-down control, birds indirectly reduce

herbivory and promote plant growth. While several studies sought to characterize

biogeographic patterns in top-down control by birds, variation in bird predation

along elevational gradients is not well characterized in terms of both its com-

monness and the mechanisms underlying such variation. Here, we character-

ized variation in bird predation along a 700-m montane elevation gradient using

artificial clay caterpillars, assessing the roles of variation in aridity, other

elevational effects not associated with aridity (e.g., most notably growing season

length), and bird abundance and diversity. Multivariate models revealed increas-

ing attack rates with aridity (when controlling for the effects of elevation) and

elevation (when controlling for aridity). Because aridity declines with elevation,

elevational patterns were not detectable in a univariate analysis. Bird abundance

(but not diversity) decreased with elevation (but not aridity) and did not provide

an explanation for our results, suggesting that the underlying mechanisms were

behaviorally based. We speculate that the declining abundance of insect prey

with elevation and aridity leads to increased bird foraging efforts and thus the

likelihood of attacking clay caterpillars. If widespread, these dynamics have

important consequences for both the interpretation of predation bioassays gen-

erally and our understanding of the multivariate drivers of variation in

top-down control by predators and predation risks experienced by prey.
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INTRODUCTION

Predators exert strong top-down control of insect prey
and through this contribute to increased plant growth

and fitness (Bael et al., 2008; Hairston et al., 1960;
Mooney, Gruner, et al., 2010; Paine, 1980; Vidal &
Murphy, 2018). In addition, predation is fundamental to
structuring community dynamics through shaping prey
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behavior and life histories (Camacho & Avilés, 2019;
Holt & Lawton, 1994; Jeffries & Lawton, 1984; Lima &
Dill, 1990; Schemske et al., 2009). Previous synthetic
work has shown that the strength of top-down control of
insect herbivores by predators is highly variable
(Mooney, Gruner, et al., 2010; Vidal & Murphy, 2018).
For instance, biotic factors such as primary productivity
(Oksanen et al., 1981) and herbivore diversity and behav-
ior (Wilby & Orwin, 2013) can determine the strength of
top-down control by influencing predator abundance and
community composition. Similarly, abiotic factors such
as temperature, precipitation, and nutrient availability
(Camacho & Avilés, 2019; Galm�an et al., 2018; Mooney,
Gruner, et al., 2010; Moreira et al., 2018) can drive varia-
tion in top-down control through effects on predator
resource limitation, metabolism, and energetic needs
(Del Grosso et al., 2008). Yet while some important fac-
tors driving top-down control have been identified, it is
unclear whether and how these mechanisms work collec-
tively to generate predictable patterns of spatial variation
in trophic structure (Moreira et al., 2018).

A long-standing paradigm in ecology is that the
strength of biotic interactions increases toward lower lati-
tudes and elevations due to warmer and more stable cli-
mates (Fischer, 1960; Hillebrand, 2004; Roslin et al., 2017;
Schemske et al., 2009). Biogeographic gradients, such as
those associated with latitude or elevation, covary with
abiotic factors, such as temperature and precipitation,
making them powerful tools for understanding how cli-
mate is linked to ecological and evolutionary processes
that produce spatial variation (Descombes et al., 2020;
Fischer, 1960; Moreira et al., 2018; Pellissier et al., 2018;
Schemske et al., 2009; Schluter & Pennell, 2017;
Willig et al., 2003). This has mostly been assessed in
plant–herbivore interactions, whereby herbivore pressure
is predicted to be stronger at lower elevations and lati-
tudes (Connell, 1971; Dobzhansky, 1950; Janzen, 1970).
However, empirical studies testing this prediction
yielded contrasting results, with some studies showing
positive (Matías & Jump, 2015; Moreira et al., 2014;
Zhang et al., 2015), negative (Hülber et al., 2015;
Metcalfe et al., 2014), or no linear association with eleva-
tion or latitude (H�odar & Zamora, 2004; Lay et al., 2013;
Loughnan & Williams, 2019; Sam et al., 2020). Gradients
in predation rates remain largely untested, limiting our
knowledge not only of the sources of variation in
predator–herbivore interactions and intraguild predation
dynamics but also of how such variation may ultimately
modulate herbivory and affect plant fitness (Moles &
Ollerton, 2016; Moreira et al., 2018; Zhang et al., 2015).

Past works exploring elevational and latitudinal gra-
dients in herbivore natural enemies have found
contradicting patterns both within and between taxa.

While there is strong support for decreasing
predation and parasitism by invertebrates with elevation
(Camacho & Avilés, 2019; Hodkinson, 2005; Roslin et al.,
2017; Tiede et al., 2017; Zvereva et al., 2019), gradients in
predation by vertebrates (e.g., birds) have been found to
be positive (Tvardikova & Novotny, 2012), neutral
(Roslin et al., 2017; Schwenk et al., 2010), or nonlinear
(Sam et al., 2015, 2023) with elevation. Additionally, Sam
et al. (2015) suggest that with the elevational decrease
in ant predation, the relative importance of bird preda-
tion increases, further highlighting the importance of
taxonomic groups when assessing predation (Roslin
et al., 2017; Sam et al., 2015; Tvardikova & Novotny,
2012; Zvereva et al., 2019). Inconsistent outcomes could
be driven by varying study locations, gradient lengths, and
methods, but a global study of predation across latitude
and elevation conducted by Roslin et al. (2017) found nei-
ther a latitudinal nor an elevational gradient in predation
with birds. This is striking, as it is well known that birds
are a key natural enemy exerting strong predation effects
on insect herbivores (Bael et al., 2008; Maas et al., 2016;
Van Bael et al., 2003), and while intraguild predation
should be expected to dampen top-down control by birds,
past meta-analyses have failed to detect such effects
(Mooney, Gruner, et al., 2010). The known differences in
arthropod consumption based on biome type (increased
consumption in tropical forests compared with temperate
forests; Nyffeler et al., 2018) and plant community compo-
sition (increased plant diversity drives increased attack
rates; Nell, 2018) indicate that there are other biotic and
abiotic sources driving variation in bird predation.

Elevational gradients are particularly relevant
because they reduce the confounding effects of historical
and biogeographical differences that occur in latitudinal
gradients (Hodkinson, 2005; Rasmann et al., 2014).
Several factors that may underlie elevational variation in
bird predation, and drive this variation in findings among
past studies, are climate, predator abundance and compo-
sition, and predator foraging behavior. First, temperature
and precipitation can differentially constrain the physiol-
ogy of endotherms versus ectotherms (e.g., birds
vs. arthropods), directly affecting predator activity rates,
as well as indirectly via changes in primary productivity
and prey abundance (Avery & Krebs, 1984; Mazía et al.,
2004; Van Bael & Brawn, 2005). Second, bird abundance
and diversity has been found to decline overall with ele-
vation, but expresses a nonlinear pattern with diversity
and abundance, peaking at mid-elevation, driven by
insectivorous birds (Blake & Loiselle, 2000; Ding et al.,
2021; Herzog et al., 2005; Pan et al., 2016; Sam et al.,
2015, 2023). Variation in predator diversity and density
could increase the suppression of arthropods via species
differences in predator niche, and foraging behaviors
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could drive the magnitude of effect on arthropods
(Bael et al., 2008; Griffin et al., 2013; Maas et al., 2016;
Nell, 2018). Third, decreased herbivore abundance at
higher elevations could drive increased predator activity
with limited prey availability (Camacho & Avilés, 2019).
In contrast, positive density-dependent foraging in birds
could drive higher attack rates at lower elevations (Singer
et al., 2012). Variation in the range of elevational gradi-
ents and environmental conditions used across different
studies makes it difficult to generalize trends, and thus
warrants further research aiming to test for elevational
gradients in birds and the underlying mechanisms that
could explain variation in these patterns.

Here, we explored patterns of predation by insectivo-
rous birds along an elevational gradient in the Rocky
Mountains (Gothic, Colorado, USA), and whether such
patterns were mediated by climate and/or predator abun-
dance and diversity. To do so, we deployed model clay
caterpillars (Low et al., 2014) in aspen trees across sites
spanning a 700-m elevational gradient (2450–3150 m)
and estimated attack rates by birds during peak bird
activity over a 14-day period in summer 2020. We then
obtained data on temperature, precipitation, and insectiv-
orous bird diversity and abundance along this same gra-
dient in order to explore the mechanistic basis of any
observed patterns in bird predation. By reporting patterns
of bird predation along elevational gradients and testing
for the potential underlying mechanisms, this study con-
tributes to understanding the evolutionary and ecological
processes responsible for patterns of elevational variation
in prey–predator interactions.

METHODS

Study area

We conducted this study in Gunnison County near the
Rocky Mountain Biological Laboratory (RMBL) in
Gothic, CO (38.96� N, −106.99� W), in August 2020.
In the Rocky Mountain region, Populus tremuloides
grows from 2100 to 3350 m, a 1250-m gradient
(DeByle & Winokur, 1985). Our study sites span a 700-m
elevational gradient from 2453 to 3154 m, which repre-
sents nearly all of the aspen elevational distribution
within Gunnison County. Abundant insectivorous
birds in this region are mountain chickadees, mountain
bluebirds, and orange-crowned warblers, and, during
this time of year, are postfledging. This elevation
gradient encompasses variation in numerous abiotic
factors, most notably temperature, growing season
length (declining with elevation), and precipitation
(increasing with elevation), with the tight covariation in

temperature and precipitation being best characterized as
a gradient in aridity that declines with elevation (Nelson,
Pratt, et al., 2019; Nelson, Symanski, et al., 2019; Petry
et al., 2016).

Approach overview

Our approach was to first test for elevational gradients in
bird attack in parallel with past studies in other regions
(Sam et al., 2015, 2023; Tvardikova & Novotny, 2012).
We then sought to explore the underlying dynamics with
two approaches. First, we decomposed the effect of eleva-
tion in a multivariate model that tested for the effects of
aridity and—having controlled for aridity—the residual
effects of elevation, most notably growing season length.
We then explored whether elevation and aridity were
associated with variation in the abundance and diversity
of insectivorous birds.

Bird predation

Within the study area, we selected five valleys
(East River, Washington Gulch, Taylor River Lower,
Tayler River Upper, Spring Creek), and within each val-
ley, we chose four separate locations (sites hereafter)
within the aspen groves (Figure 1). There are two
high-elevation valleys and three low-elevation valleys,
with elevational variation within and among
(Appendix S1: Table S1). Valleys, and sites within valleys,
were separated by at least 2.5 km and 213 m, respectively.
In each site, we selected 10, 2–3-m tall quaking aspen
saplings (Salicaceae: P. tremuloides) separated by at least
1 m. We estimated attack rates by birds by attaching two
50-mm long and 5-mm wide model clay caterpillars made
of green nontoxic modeling clay (Sargent Art) using a
clay extruder (Walnut Hollow) to tree branches with
super glue (Loctite) (Low et al., 2014), with the size,
shape, and color imitating Lepidopteran larvae (Roels
et al., 2018; Roslin et al., 2017; Sam et al., 2015;
Tvardikova & Novotny, 2012). We selected branches
located 1–2.5 m from the ground and placed two caterpil-
lars on the surface of the branches, 10–30 cm away from
the branch tip. The nonhardening clay allows an accurate
assessment of attack and some precision in distinguishing
the identity of the attacker (e.g., avian, arthropod, reptile,
and mammal). Where necessary, we pruned leaves
around the caterpillars to prevent contact with the clay
and replaced caterpillars in the same location following
any predator attack. The month of August at our field
sites is generally postfledging time for bird communities,
which in turn may drive higher rates of predation as
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naive birds have been shown to increase attack rates due
to higher risk taking and unlearned behaviors (Zvereva &
Kozlov, 2021, 2023), although this is true for all our field
sites and is therefore unbiased. We recorded models
attacked by birds four separate times from July 31 to
August 13, on day 3 (3 days of deployment), day 5 (2 days
of deployment), day 7 (2 days of deployment), and day
14 (7 days of deployment), with the exception of one val-
ley (Taylor River Lower) which was initiated on day
3 and subsequently checked three times. When checking
for attack, caterpillars that were missing (0.003% across
deployed caterpillars and between checks) were replaced
and not recorded as an attack.

Bird abundance and diversity data

To characterize the insectivorous bird community, we
obtained citizen science data on bird abundance and
diversity from our study area using eBird, the largest
biological citizen science reporting program (Sullivan
et al., 2009, 2014). In the absence of field data on the
bird community, these data allowed us to characterize
elevational gradients in bird abundance and diversity
within the same region (Figure 1). However, given the
substantial biotic and abiotic variation encompassed
by this gradient, strong patterns of variation in bird
abundance or community composition should be

F I GURE 1 Map of study region showing sites used for predation bioassay on aspen trees (Clay_caterpillar) and from which bird data

were collected (ebird_checklist). The Rocky Mountain Biological Laboratory (RMBL) location is indicated on the map.
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detectable. We used the “Best practices for Using eBird
Data” guide to extract data from the eBird Basic Data
(Version EBD_relMay-2022) and process the data to
account for challenges in using citizen science datasets
(Strimas-Mackey et al., 2023). Following this guide, we
restricted our data to use checklists less than 5 h in
duration, less than 5 km in length, and fewer than
10 observers, reducing variation in the data. We
filtered the checklists to August 2020 and within the
same region (portions of Gunnison County) and
elevational gradient of the sites used to obtain attack
rates with clay caterpillars. We removed checklists
classified as stationary, incidental, or historical obser-
vations to further reduce variation in our data. Our use
of these checklists to test for an elevational gradient, in
insectivorous birds, presented three challenges. First,
because observers travel during data collection, the
spatial data for a checklist may not be precise.
However, this error is unbiased and small, given the
large scale of the elevational gradient being assessed
among checklists. Second, at popular locations, check-
lists are assigned to “hotspots” (common or shared
locations) that do not necessarily reflect the exact
location of the checklist. To account for this, we
averaged data at hotspot locations to constitute a single
checklist. Third, the checklists can vary in time
(searching effort) and the total distance covered. To
account for this, we included the checklist duration as
a covariate in statistical models. Lastly, there are taxo-
nomic biases in reporting bird species, in which certain
species are erroneously favored, resulting in other spe-
cies going unreported. This was mitigated by only
using complete checklists, where the observer claimed
to have identified and reported all encountered
species. Other common issues such as temporal or
spatial biases driven by increases in observations
due to popularity, availability, and accessibility
(Strimas-Mackey et al., 2023) are not likely a concern
in our analysis as the studied locations are similar in
these regards.

A value for elevation was assigned to each checklist
using the R package Elevatr (Hollister et al., 2021), which
uses the coordinates to extract elevation from the USGS
Elevation Point Query Service (https://nationalmap.gov/
epqs/). With elevation for the checklists, we were able to
create an elevational gradient for the insectivorous bird
community. We used Elton Traits v1.0 (Wilman et al.,
2014) to obtain the feeding guilds of each bird observed.
The Elton Traits database characterizes global species attri-
butes, such as diet and foraging strategies, for mammals
and birds, based on literature sources. We removed from
our analyses any bird that did not have a diet of at least
50% invertebrates to include omnivores in our analyses.

Climate data

We used the PRISM (Parameter-elevation Regressions on
Independent Slopes Model) Climate Group Model to
interpolate, within 4-km grids, the average daily tempera-
ture and total precipitation at each site for the month of
August 2020 when the study was conducted (Daly, 2006).
This source of climate data has been used in many
studies conducted in the same region (Nelson, Pratt, et al.,
2019; Nelson, Symanski, et al., 2019; Petry et al., 2016) and
is an unbiased source of data as it takes into account varia-
tion in terrain. Across sites, precipitation ranged from
14.55 to 47.938 mm, and the average daily temperature
ranged from 16.6 to 13.3�C. We summarized precipitation
and temperature data using principal components analysis
(PCA). The first principal component (PC1) explained
83.6% of the multivariate covariation between the climate
variables and was positively associated with temperature
and negatively associated with precipitation, thus being an
effective proxy of aridity. Given that these are the two cli-
matic variables that drive the aridity of the environment
experienced by birds, we hereafter refer to PC1 as
representing an aridity gradient. Importantly, elevation
was negatively associated with aridity. The PCA was cal-
culated separately based on data from the clay caterpil-
lar sites (Appendix S1: Figure S1) and the locations of
the bird checklists (Appendix S1: Figure S2), with the
resulting PC1 (explaining 71.7% of the multivariate
covariation between the climate variables) being similar
in both cases.

Statistical analysis

We first tested for the effects of elevation and aridity
alone in univariate models in order to explicitly compare
our findings with past studies that have focused exclu-
sively on elevation. We then performed a multivariate
analysis, testing for the simultaneous effects of elevation
and aridity. Because these tests for the effect of elevation
controlled for the influence of aridity, they identified
other aspects of elevation within our study region, most
notably growing season length (Nelson, Pratt, et al., 2019;
Nelson, Symanski, et al., 2019; Petry et al., 2016). Our
analyses of bird attack were based on the proportion of
caterpillars (20 per sites; 2 on each of 10 trees) attacked
at each site per sampling date (out of 20 caterpillars;
10 trees × 2 caterpillars per tree), totaling 76 attack rates
(4 valleys × 4 sites × 4 deployments = 64; 1 valley × 4
sites × 3 deployments = 12). We used a linear mixed
model (LMM) to test for the independent effects of
elevation and aridity (both fixed effects coded as continu-
ous variables), including the number of days caterpillars
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were exposed and site as a random factor. We used a sim-
ilar LMM to test for gradients in bird abundance and
diversity, including the duration of each checklist as a
covariate. The residuals of the models appeared normal
after inspecting the Q–Q plots. Results based on the
binary response of attacked versus not attacked for each
individual caterpillar produced qualitatively similar
results but are more difficult to interpret and visualize. In
this multiple regression analysis, there is a potential con-
cern for multiple collinearity between the two indepen-
dent variables, elevation and aridity. Correlated
independent variables can result in increased error of
parameter estimates and reduced statistical power but do
not bias parameter estimates (Lindner et al., 2020). To
assess this, we inspected the variance inflation factor
(VIF). In addition, because of concerns over reduced
power and misestimation of p values, we also inspected
Akaike information criterion (AIC) values among poten-
tial models (null model; each variable alone; both vari-
ables together) to determine whether the inclusion of
both correlated variables improved fit (delta AIC > 2) as
compared with the univariate models. Additionally, we
tested for elevational gradients in bird abundance and
diversity in a multiple regression analysis with elevation
and aridity. We ran all statistical analyses in R software
version R 4.2.0 (R Core Team, 2016). Specifically, we ran
LMMs using the lmer function from the lmerTest pack-
age (Kuznetsova et al., 2017).

RESULTS

Models testing for the independent effects of elevation and
aridity on attack rates by birds revealed a significant effect
of both factors. In univariate models, there was no effect
of elevation (F1,19.077 = 1.94, p = 0.18) or aridity
(F1,18.333 = 0.22, p = 0.643). Importantly, in multivariate
models, bird attack rates increased with elevation
(F1,18.134 = 7.24, p = 0.015; Figure 2) and aridity
(F1,17.393 = 5.14, p = 0.036; Figure 2), reflecting the fact
that these two effects occur in such a way that they mask
each other. Specifically, aridity and elevation are
correlated, with aridity decreasing with elevation
(F1,18 = 100.79, p ≤ 0.001; Figure 3). Accordingly, the
effects of elevation not associated with aridity work
(e.g., growing season length) cross-purposes to aridity
itself, resulting in a now-detectable overall effect of eleva-
tion in the univariate model. In this analysis, the VIF for
the two correlated independent variables (elevation, arid-
ity) was 6.6, a value that reflects the strong association
between these variables but is unlikely to lead to bias in
parameter estimation (Lindner et al., 2020). The AIC
model comparison showed that the bivariate model
(AIC = −55.203) was a superior fit as compared with
the univariate models with elevation (AIC = −52.172)
and aridity (AIC = −50.455) and the null model
(AIC = −52.226). In multivariate models, bird abundance
was associated with elevation (F1,41 = 4.83, p = 0.034;

F I GURE 2 Association between elevation and aridity and proportion attack of clay caterpillars. For elevation, attack rates are residual

values accounting for aridity, and for aridity, attack rates are residual values accounting for elevation. Aridity is represented as the score on

the first principal component (PC1) of an ordination data on total annual precipitation and mean annual temperature from study sites.

See Figure 1 for the location of the field sites. Attack rate increased significantly with both elevation and aridity.
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Figure 4), but not with aridity (F1,41 = 0.74, p = 0.393;
Figure 4), whereas bird diversity was not associated with
elevation (F1,41 = 0.085, p = 0.772; Figure 4) nor aridity
(F1,41 = 1.11, p = 0.299; Figure 4).

DISCUSSION

Multivariate models revealed complex associations
among the environmental variables driving bird attack of
clay caterpillars. Increasing elevation was associated with
declining aridity. Controlling for the effects of elevation,
increasing aridity was associated with higher bird attack
rates. Similarly, controlling for the effects of aridity,
increasing elevation was associated with increased attack.
Yet because aridity declines with elevation, the overall
effects of elevational patterns were not detectable in a
univariate analysis. Variation in the regional bird abun-
dance and diversity did not explain variation in attack
rate as abundance (but not diversity) decreased with ele-
vation, suggesting that our findings were driven by
behaviorally based mechanisms. We speculate that the
positive relationships between bird attack and both
elevation and aridity were driven by variation in the her-
bivore communities within which the caterpillars
were deployed; herbivore abundance is documented to

decrease with elevation and aridity (Galm�an et al., 2018;
Poveda et al., 2012; Suzuki et al., 2012; Zhang et al., 2015),
and this may in turn increase food limitation and thus
the probability of attack on clay caterpillars in a dynamic
akin to apparent competition (i.e., associational suscepti-
bility) (Holt, 1977). Such dynamics would have important
consequences for both the interpretation of predation
bioassays generally and for our understanding of the
multivariate drivers of variation top-down control by
predators and predation risks experienced by prey.

Our findings demonstrate the importance of consider-
ing and accounting for the multiple factors that can
covary along environmental gradients. Specifically, eleva-
tion and aridity were highly correlated with each other in
a manner that masked their individual effects; although
elevation was associated with increasing attack rate in
the multivariate models, in a univariate model, this effect
was masked by declining aridity and associated decrease
in attack. As shown by Roslin et al. (2017), there are no
consistent gradients of predation by birds among
sites along a 2000-m elevational gradient across the
globe, indicating that there are location-dependent mech-
anisms driving the bird predation patterns found in
single-location studies. This is likely due to the lack of
gradient in elevation within each of their sites, as their
gradient spanned sites from different locations. Empirical
studies robustly exploring a 4000-m gradient in Papua
New Guinea found a nonlinear predation gradient in
birds that was associated with a similar gradient in bird
abundance (Sam et al., 2015), a decrease in bird species
richness with elevation and temperature (Sam et al.,
2019), and a mid-elevation peak in herbivore abundance
and herbivory (Sam et al., 2020). In addition Sam et al.
(2023) reported the same findings, and additionally
reported a decrease in arthropod densities. Lastly, along a
1700-m gradient, Tvardikova and Novotny (2012) found
an increase in bird predation, consistent with our
observed patterns, yet this could be expressing the begin-
ning of the nonlinear pattern found in studies with a
larger gradient. Our study encompasses the majority of
the P. tremuloides elevation range in our study region
and includes multiple high- and low-elevation valleys to
rigorously test for predation gradients by accounting
for between-valley variation. Future studies should
expand their gradients across the entire range, including
multiple transects to account for this variation. While it
is convenient to focus on variation in predator abundance
along elevational and latitudinal gradients, other
factors that must be considered include predator diver-
sity, temperature variation and effects on metabolism
and food requirements, and variation in prey communi-
ties including prey abundance, body size, defense, and
diversity.

F I GURE 3 Relationship between aridity and elevation among

the field sites used for the clay caterpillar bioassay (R 2 = 0.84).

Attack rates (proportion attacked) are indicated by the marker size.

Aridity is represented as the score on the first principal component

(PC1) of an ordination data on total annual precipitation and mean

annual temperature from study sites. See Figure 1 for the location

of the field sites.
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We speculate that the association of attack rate with
elevation and aridity is driven by associational effects. It is
well known that the predation risk experienced by individ-
ual prey can be influenced by neighbor effects from other
members of the prey community within which it is embed-
ded (Frank van Veen et al., 2006; Morris et al., 2005;
Muller & Godfray, 1997). Associational effects are well
studied in both plant–herbivore (e.g., Lau & Strauss, 2005)
and herbivore–enemy interactions (e.g., Carvalheiro
et al., 2008). For example, an exotic seed predator is
believed to have driven an entire community of native
seed predators locally extinct through the recruitment of
shared natural enemies to their shared host plant
(Carvalheiro et al., 2008). Two contrasting dynamics for
enemy-mediated indirect interactions among prey have
been examined both theoretically and empirically. With
associational susceptibility (i.e., apparent competition),
the abundance of one prey (“A”) can negatively affect
another prey (“B”) by recruiting a shared predator that
then preferentially attacks the latter (“B”) (Connell, 1990;
Holt, 1977; Holt & Bonsall, 2017; Holt & Lawton, 1994).
For example, Evans and England (1996) found increased

predation and rates of parasitism on the alfalfa weevil
Hypera postica when the pea aphid Acyrthosiphon pisum
was present. With associational resistance, one prey
(“A”) recruits or otherwise distracts predators away from
another prey (“B”), lowering attack rates on the later
(“B”) (Barbosa et al., 2009; Chaneton & Bonsall, 2000).
For example, Nesbit et al. (2016) found in mixed-species
treatment of a chemically defended aphid Brevicoryne
brassicae and a relatively undefended aphid Myzus
persicae, lower rates of predation on the undefended spe-
cies due to predator deterrence of poor quality prey.
Accordingly, whether associational susceptibility or resis-
tance occurs is believed to be driven by the relative value
of the two prey items to their shared consumer. In the
case of our predator assay, clay caterpillars are certainly
of lower nutritional value to birds. Although the use of
clay caterpillars is widespread, the method comes with
explicit biases in that the lack of chemical and behavioral
cues drives the underestimation of predation rates as
compared with live sentinel prey (Nimalrathna et al.,
2023; Zvereva & Kozlov, 2023). Even though the intensity
of predation is likely underestimated in our study, we

F I GURE 4 Association between elevation and aridity and bird abundance and diversity. Aridity is represented as the score on the first

principal component of an ordination data on total annual precipitation and mean annual temperature from study sites. Data on bird

abundance and diversity are extracted from the eBird database. See Figure 1 for the location of the field sites. Bird abundance significantly

declined with elevation but did not vary with aridity, whereas bird diversity was not associated with either elevation or aridity.
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believe this method to be as informative of predator
behavior as if using real prey, acknowledging that actual
predation may be at a higher rate (Lövei & Ferrante, 2017).
Furthermore, there is evidence that birds respond to
response to variation in prey quality in a manner that
would result in associational effects; bird attack rates of
experimentally deployed blowfly puparia were 8.4-fold
higher than attacks of simultaneously deployed clay
models (Zvereva & Kozlov, 2023). Based upon such find-
ings, it can be expected that estimates of predation rate
with clay caterpillars are driven not only by the abun-
dance and composition of predator communities—as is
commonly assumed—but also by prey communities
within which the assay is conducted.

Our speculation that associational effects underlie our
results is based on the assumption that the abundance of
insect prey relates to both elevation and aridity. Theory
predicts that herbivore abundance will decrease with ele-
vation due to cooler and more seasonal climates. While
many studies have found support for this (Galen, 1990;
Galm�an et al., 2018; Poveda et al., 2012; Rasmann et al.,
2014; Suzuki et al., 2012), others have found neutral
(Galm�an et al., 2018; H�odar & Zamora, 2004; Lay et al.,
2013), or even positive (Hagen et al., 2007; Koptur, 1985;
Zhang et al., 2015), relationships with elevation, further
reinforcing the need to disentangle the mechanisms of this
variation. Accordingly, past work exploring these dynam-
ics across latitudinal gradients has shown that herbivore
abundance declines in higher latitudes in temperate cli-
mates than in lower latitudes in tropical climates due to
increased aridity and lower productivity (Anstett et al.,
2016; Coley & Barone, 1996; Moreira et al., 2015;
Rodríguez-Castañeda, 2013; Zhang et al., 2016). Our past
work at the same field sites as in this study has
documented higher abundances of several herbivorous
insects (aphids; Hemiptera: Aphididae) associated with
low elevation and more arid sites (Nelson, Pratt, et al.,
2019; Nelson, Symanski, et al., 2019), although this work
did not seek to disentangle the separate effects of aridity
from other aspects of the elevational gradient. Given this,
we speculate a decrease in herbivore abundance with ele-
vation drives, increased foraging rates of birds due to lower
prey availability, and increased rates of attack on clay cat-
erpillars. Particularly because birds have been found to
forage in a density-dependent manner (Singer et al., 2012).
This is an important implication when assessing predation
via clay caterpillars, as the risk of attack on clay caterpil-
lars may not be as consistent across gradients as previously
thought, and assessment of the biotic and abiotic factors
should be included when characterizing predation rates.

We found attack rates of birds on insect prey
increased with aridity and elevation after controlling for
the variation of each, despite the negative correlation

between aridity and elevation. This suggests that across
elevational gradients, there are multiple covarying factors
that may be independently driving variation in top-down
control. While factors such as climate and predator com-
munity composition may drive these patterns, we suspect
that these underlying mechanisms may be behaviorally
based and should be fully characterized in future gradient
studies. For instance, future studies should focus on
experimentally investigating the independent and inter-
active effects of different factors covarying along latitudi-
nal and elevational gradients of predation. Overall, our
findings have important implications for interpreting pre-
dation bioassays, understanding predation risks experi-
enced by prey, and elucidating multivariate biotic and
abiotic drivers of variation in top-down control.
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