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Abstract Although there is a growing interest in the effects of intra-specific plant genetic variation on species

interactions, the effects of plant sex, an important axis of genetic variation, have been less studied. In

addition, previous work investigating plant sex effects on species interactions has frequently focused

on bitrophic interactions (e.g., herbivory), usually ignoring plant sex effects on higher trophic levels

(i.e., natural enemies). Here, we investigated the effects of plant sex on herbivore abundance and that

of their natural enemies associated with the dioecious shrub Buddleja cordata Kunth (Scrophulari-

aceae). Furthermore, we measured a subset of plant traits frequently involved in herbivore resistance

and the potentially underlying plant sex effects. To this end, we recorded the abundances of a special-

ist leaf-chewing caterpillar [Acronyctodes mexicanariaWalker (Lepidoptera: Geometridae)] through-

out an entire growing season. We also recorded information about the caterpillar’s parasitoids, as

well as leaf water content, phenolic compounds, phosphorus, and nitrogen for male and female

plants of B. cordata. Plant sex did not significantly influence caterpillar abundance but did have an

effect on natural enemies, with parasitoid abundance being 2.4-fold greater on female than on male

plants. The effect of plant sex on parasitoids remained significant after accounting for caterpillar

abundance, suggesting that it was underlain by a trait-mediated (rather than density-mediated)

mechanism. Finally, we found that male plants had a higher concentration of phenolic compounds

(other traits did not differ between plant sexes). These results provide valuable evidence for the

extended effects of plant sex on the third trophic level and point at plant traits potentially mediating

such effects.

Introduction

Several studies over the last decade have shown that plant

intra-specific genetic variation is a predominant force

shaping arthropod communities (Hare, 2002; Hughes

et al., 2008; Bailey et al., 2009; Mooney & Singer, 2012).

Plant genotypes can harbour distinct herbivore communi-

ties that systematically differ in arthropod community

structure, including differences in density, evenness, and

species composition (Johnson & Agrawal, 2005; Wimp

et al., 2007; Pratt et al., 2017). Likewise, evidence has

mounted for the effects of plant genotypic variation on the

outcome of plant–herbivore interactions (Fritz, 1995;

Wimp et al., 2007; Abdala-Roberts et al., 2012; Abdala-

Roberts & Mooney, 2013), as well as interactions at higher

trophic levels, including herbivore–enemy (Gols et al.,

2009; Singer et al., 2012; Abdala-Roberts & Mooney, 2013;

Poelman & Dicke, 2014) and herbivore–mutualist
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interactions (e.g., ant-aphid; Wimp & Whitham, 2001;

Mooney & Agrawal, 2008; Abdala-Roberts et al., 2012).

Plant genetic effects on interactions at higher trophic

levels can take place via various mechanistic pathways

(Hare, 2002; Bailey et al., 2014). For example, plant genetic

variation may directly influence the density of herbivores

and, indirectly, influence predator and parasitoid abun-

dance (so-called density-mediated indirect effects;

Mooney & Singer, 2012). Under this scenario, the ratio of

herbivore to natural enemy abundance remains

unchanged among plant genotypes, via an ‘interaction

chain’ (sensu Wootton, 1994). However, plant genetic

variation may also alter, through changes in plant quality,

either herbivore resistance to enemies, due to the seques-

tration of plant toxins (Singer et al., 2004; Boeckler et al.,

2011; Mason et al., 2014) or herbivore susceptibility to

enemies due to a reduced growth rate (Singer et al., 2012;

Mooney et al., 2012a). This would lead to changes in the

ratio of herbivore to natural enemy abundance (so-called

trait-mediated indirect effects; Mooney & Singer, 2012).

Likewise, plant genotypes may also vary in traits directly

affecting natural enemies (attracting or repelling them),

with altered enemy behaviour in turn affecting attack rates

on herbivores (Gassmann & Hare, 2005; Tamiru et al.,

2011; Mooney & Singer, 2012).

Plant sex is an important source of phenotypic variation

in dioecious plants (�Agren et al., 1999; Cornelissen & Stil-

ing, 2005) and is often genetically based (Ming et al.,

2011). Several studies have shown that plant sexes vary

phenotypically (Barrett & Hough, 2013), including differ-

ences in physical and chemical traits putatively associated

with resistance to herbivores (Cornelissen & Stiling, 2005).

Female plants are expected to invest more resources into

reproduction, such that allocation trade-offs are expected

to lead to decreased growth and in turn higher defences

(and less herbivory) relative to male plants (Eckhart &

Seger, 1999; Cepeda-Cornejo & Dirzo, 2010). These pre-

dictions have been tested empirically for several plant spe-

cies, with evidence from recent work being non-

supportive – for example, Valeriana edulis Nutt. ex Torr.

& A Gray (Mooney et al., 2012b; Petry et al., 2013); Bac-

charis salicifolia (Ruiz & Pav.) Pers. (Abdala-Roberts et al.,

2016; Nell et al., 2018) – relative to more consistent pat-

terns reported for other species in earlier studies (see revi-

sion by Cornelissen & Stiling, 2005). In addition, only a

handful of studies have also tested for the multitrophic

effects of plant sex (e.g., Mooney et al., 2012b; Petry et al.,

2013; Abdala-Roberts et al., 2016; Nell et al., 2018). This

knowledge gap is important, as variation in natural enemy

top-down pressure can help explain effects of plant sex on

herbivores, as well as the community-level consequences

of plant sexual dimorphism. Even less work has addressed

the plant traits (e.g., defences) underlying plant sex effects

on higher trophic levels (but see Nell et al., 2018).

In this study, we investigated the effects of plant sex on

the abundance of a specialist leaf-chewing caterpillar,

Acronyctodes mexicanariaWalker (Lepidoptera: Geometri-

dae), and its parasitoids associated with the dioecious

shrub Buddleja cordata Kunth (Scrophulariaceae). To this

end, we recorded insect abundances throughout an entire

growing season and additionally measured a suite of leaf

structural (water content), chemical (phenolic com-

pounds), and nutritional (phosphorus and nitrogen) traits

potentially associated with effects of plant sex on these

insects. Specifically, we sought to answer (1) are there dif-

ferences between plant sexes in plant traits, and caterpillar

and parasitoid abundance? And (2) are the effects of plant

sex on parasitoids fully accounted for by differences in

caterpillar abundance (i.e., density-mediated indirect

effects), or are such plant sex effects on the third trophic

level mediated by changes in species traits (e.g., plant sex-

driven differences in herbivore resistance or susceptibility

to enemies) leading to trait-mediated indirect effects? The

answers to these questions may advance our understand-

ing of the multitrophic consequences of plant sex on asso-

ciated insect communities and provide a general sense for

themechanistic pathways underlying such effects.

Materials and methods

Study area

The study site was located at ‘Pedregal de San Angel Eco-

logical Preserve’. This preserve covers approximately

176 244 ha and is located at the main campus of the

National University of Mexico, Mexico City (19°190N,
99°110W, 2 250 m above sea level). The climate at this site

is temperate subhumid with a summer rainy season (mean

annual temperature = 15.5 °C, annual precipita-

tion = 870 mm). The vegetation of this field site is xero-

phytic scrub (Rzedowski, 1978) with a rocky substrate of

volcanic origin (Carrillo, 1995).

Study system

Buddleja cordata is a perennial dioecious shrub or small

tree (1.5–6 m tall) which is distributed from Mexico to

Guatemala. It is commonly found along forest edges and

watercourses at elevations of 1 500–3 000 m. At the field

site, this species usually flowers from June to February and

produces fruits fromOctober to April (J Hern�andez-Cum-

plido, pers. obs.) and is heavily attacked by the specialist

leaf chewer A. mexicanaria (Garc�ıa-Garc�ıa & Cano-San-

tana, 2015). Larvae of this species cause extensive leaf dam-

age and are found on plants from late June (when trees

start to produce flowers) to January (when trees are
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producing fruits), with peak abundances occurring in

September (Garc�ıa-Garc�ıa & Cano-Santana, 2015). This

insect is multivoltine with at least two generations per year.

The most common enemies of A. mexicanaria at the study

site are gregarious parasitic wasps of the genus Parapenteles

(Hymenoptera: Microgastrinidae), representing 87% of

total parasitoid abundance recorded for A. mexicanaria

during the study. Much less abundant were an unidenti-

fied solitary braconid parasitic wasp and an unidentified

solitary tachinid fly, representing 8 and 5% of total para-

sitoid abundance, respectively (J Hern�andez-Cumplido,

pers. obs.). All these parasitoids are koinobionts and attack

second and third instars.

Measurements of herbivore and parasitoid abundance

InMay 2017, we selected 102 female and 99male trees sim-

ilar in size (ca. 2 m tall). The sex of each individual was

determined over the previous growing season, based on

observations of fruiting. Distance among individuals was

at least 3 m to avoid contact between trees. Twice a week,

frommid-August to late December 2017, wemanually col-

lected all A. mexicanaria larvae found on each tree. Other

herbivores were uncommon (J Hern�andez-Cumplido,

pers. obs.). Once collected, we placed A. mexicanaria lar-

vae in ventilated 500-ml plastic containers and incubated

them under controlled laboratory conditions (10 °Cmini-

mum temperature at night and 25 °Cmaximum tempera-

ture during daytime, L14:D10, 45% r.h.). Larvae were

reared on leaves from the same plant on which they were

collected.We inspected each container daily to record par-

asitoid emergence. The total number ofA.mexicanaria lar-

vae collected per plant and the total number of parasitoids

(species pooled) emerged from caterpillars of each plant

were used for statistical analysis.

Quantification of plant traits

In September 2017, we collected five fully expanded (ma-

ture) leaves with no evidence of herbivore damage from

seven randomly chosen trees of each sex to quantify phos-

phorus and nitrogen. We chose these elements because

they represent proxies for leaf nutrient status and are typi-

cally found in low concentrations in plant tissues, and can

therefore produce nutrient limitation in insect herbivores

(Mattson, 1980). After collection, we oven-dried the leaf

material for 48 h at 80 °C and ground the leaves with liq-

uid nitrogen. To quantify nitrogen and phosphorus per-

centage in leaves, we digested approximately 0.3 g of

ground dried leaf material in a mixture of selenous sul-

phuric acid and hydrogen peroxide (Moreira et al., 2018).

We then used a colorimetric analysis of diluted aliquots

(1:40, vol:vol) of the digestion to quantify nitrogen (in-

dophenol blue method) and phosphorus (molybdenum

blue method) percentage using a Biorad 650 microplate

reader (Bio-Rad Laboratories, Philadelphia, PA, USA) at

650 and 700 nm, respectively (Walinga et al., 1995).

Concurrently, we selected another set of 10 plants of

each sex and collected two fully expanded (mature) leaves

with no herbivory to estimate water content. This trait was

chosen because low values of water content are known to

result in decreased leaf nutritional quality and palatability

for insect herbivores (Marquis et al., 2012). Immediately

after leaf collection, we weighed fresh leaves and oven-

dried the samples for 72 h at 80 °C until a constant weight

was achieved. We then weighed the dry leaves and esti-

mated the percentage of water content as [(fresh weight�-
dry weight) 9 100/fresh weight].

Finally, we also selected another set of eight plants of

each sex and collected two fully expanded (mature) leaves

with no herbivory to estimate concentration of phenolic

compounds. We chose phenolic compounds as defensive

traits because they are widely recognized as herbivore feed-

ing deterrents in many plant taxa (Salminen & Karonen,

2011; Mith€ofer & Boland, 2012). After collection, we

oven-dried the leaf material for 48 h at 40 °C and ground

the leaves with liquid nitrogen. We extracted phenolic

compounds using 0.5 g of dry plant tissue with 3 ml of

70%methanol in an ultrasonic bath for 15 min. We deter-

mined total phenolics colorimetrically by the Folin–Cio-
calteu method in a Biorad 650 microplate reader at

740 nm, using gallic acid as standard (Moreira et al.,

2014). We expressed concentrations of total phenolics in

µg g�1 tissue on a dry weight basis.

Statistical analysis

First, we tested the effects of plant sex (female vs. male,

fixed) on herbivore and parasitoid abundance (mean

number of individuals per plant). Second, to assess

whether effects of plant sex on the third trophic level were

density-mediated, we included herbivore abundance as a

covariate in the model for parasitoid abundance. If any

such effect of plant sex in the initial model became non-

significant after including herbivore abundance, then this

would indicate that the effect of plant sex on parasitoid

abundance is density-mediated (i.e., driven by caterpillar

abundance or resource quantity; Moreira & Mooney,

2013; Abdala-Roberts et al., 2016). In contrast, if any such

effect of plant sex in the initial model remained significant,

this would indicate that the effect of plant sex on parasitoid

abundance cannot be explained (at least not largely) by

differences in caterpillar density and therefore suggests a

trait-mediated indirect effect (i.e., plant sex-mediated dif-

ferences in herbivore resistance or susceptibility; Moreira

&Mooney, 2013; Abdala-Roberts et al., 2016). For all anal-

yses, we used generalized linear models with a Poisson

Plant sex and tri-trophic interactions 3



distribution and log-link function (Proc GLIMMIX in

SAS v.9.4; SAS Institute, Cary, NC, USA) (Littell et al.,

2006). Finally, we also tested the effects of plant sex (female

vs. male, fixed) on leaf traits (nutrients, water, and pheno-

lics) using linear models (Proc GLM in SAS v.9.4; Littell

et al., 2006). All plant traits were normally distributed, and

we report least squaremeans as descriptive statistics.

Results

Effects of plant sex on insect abundance and caterpillar-parasitoid
interactions

Plant sex did not significantly affect caterpillar abundance

(F1,199 = 3.16, P = 0.076; Figure 1A), but did influence

parasitoid abundance (F1,199 = 60.64, P<0.001; Figure 1B).
Specifically, female plants exhibited a 2.4-fold greater

abundance of parasitoids compared with male plants (Fig-

ure 1B). Follow-up analyses indicated that the effect of

plant sex on parasitoid abundance remained significant

after accounting for caterpillar abundance

(F1,198 = 177.22, P<0.001), suggesting a trait-mediated

indirect effect of plant sex on these herbivory–natural
enemy interactions.

Effects of plant sex on leaf traits

There was a significant effect of plant sex on the concentra-

tion of total leaf phenolics (F1,14 = 20.82, P<0.001), with
male plants exhibiting a 37% higher mean value than

female plants (Figure 2D). In contrast, there were no

effects whatsoever of plant sex on the percentage of leaf

nitrogen (F1,13 = 4.19, P = 0.06), phosphorus

(F1,13 = 0.03, P = 0.85), or water content (F1,18 = 0.11,

P = 0.74; Figure 2A–C).

Discussion

Counter to predictions that female plants should be highly

defended and thus exhibit lower herbivore pressure than

male plants (Ashman et al., 2004; Cornelissen & Stiling,

2005; Cepeda-Cornejo & Dirzo, 2010), we found that male

B. cordata plants exhibited a higher concentration of phe-

nolic compounds and there was no detectable difference in

caterpillar abundance between plant sexes. In a previous

study, Abdala-Roberts et al. (2016) similarly found no

effect of plant sex on the abundance of a specialist aphid

on B. salicifolia, and a subsequent study by Nell et al.

(2018) with the same shrub reported no effect of plant sex

on secondary metabolites (terpenes) or overall herbivore

density. Nonetheless, Abdala-Roberts et al. (2016)

reported a significantly greater abundance of another spe-

cies of generalist aphid onmale B. salicifolia plants than on

female plants. Studies with the herbV. edulis have similarly

reported inconsistent results, in one instance reporting an

effect of plant sex on the abundance of a specialist aphid

(greater on female plants; Petry et al., 2013), whereas in

another no evidence of sexual dimorphism in aphid abun-

dance was found (Mooney et al., 2012b). Taken together,

these results suggest that plant sex-based differences in

herbivore pressure might be contingent on herbivore

traits, possibly dietary specialization. Although other

insect herbivores are relatively rare on B. cordata, further

work measuring effects of plant sex on other species of

moderately abundant generalist insect herbivores would

complement our present findings and provide a more

complete assessment of effects of plant sex on the insect

herbivore fauna associated with this shrub.

Despite the lack of plant sex-based differences in cater-

pillar abundance, we found a significant difference in para-

sitoid abundance between male and female plants of B.

cordata. Females had substantially greater (2.4-fold) para-

sitoid abundance than males, consistent with previously

cited studies reporting greater abundance of ants and other

predatory arthropods on female plants in species such as

B. salicifolia (Nell et al., 2018; but see Abdala-Roberts et al.,

2016) and V. edulis (Mooney et al., 2012b; Petry et al.,

2013). Female bias for higher natural enemy abundances
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has been attributed, at least partly, to direct effects of

female floral traits such as nectar (Petry et al., 2013; Nell

et al., 2018), which is an important food source for omniv-

orous arthropods (W€ackers et al., 2005). Accordingly, B.

cordata possess nectar-rich flowers which attract birds,

bees, and wasps (J Hern�andez-Cumplido, pers. obs.), and

their role in mediating multitrophic interactions warrants

further attention.

The fact that parasitoid abundances differed between

plant sexes despite having relatively similar herbivore

abundances represents a first piece of evidence suggesting

that effects of plant sex on the third trophic level were not

explained by differences in caterpillar abundance (density-

mediated indirect effect). Our follow-up analysis indicated

that the effect of plant sex on parasitoid abundance

remained significant after including caterpillar abundance,

thus corroborating that the indirect effect of plant sex on

parasitoids was not density-mediated, but rather occurred

through some trait-mediated mechanism such as changes

in herbivore susceptibility to enemies or differences

between sexes in parasitoid attraction (Petry et al., 2013;

Moreira &Mooney, 2013; Abdala-Roberts et al., 2016). To

our knowledge, only two previous studies have assessed

the mechanisms underlying plant sex effects on natural

enemies (Petry et al., 2013; Abdala-Roberts et al., 2016).

Contrary to our findings, however, both studies reported

density-mediated indirect effects of plant sex on para-

sitoids (Abdala-Roberts et al., 2016) and ants (Petry et al.,

2013), but no evidence of trait-mediated indirect effects.

Therefore, whereas our results agree with such studies in

that stronger effects of plant sex are found for natural

enemies than herbivores, they disagree with respect to the

mechanism underlying such effects of plant sex (presum-

ably trait-mediated in our case). More studies are needed

to assess the relative importance of these mechanisms in

testing the multitrophic consequences of plant sex, as well

as to identify ecologically relevant traits (in both plants

and insects) explaining trait-mediated effects of plant sex

on associated arthropods communities.

There are several non-exclusive explanations for the

suggested trait-mediated indirect effect of B. cordata sex

on parasitoid abundance. One possibility is that female

floral traits (e.g., nectar, volatiles) directly influenced para-

sitoid recruitment (Kessler et al., 2011), resulting in

increased parasitoid abundance over and above effects of

caterpillar density alone. Another possibility is that higher

concentrations of chemical defences (e.g., total phenolics)

in males resulted in lower caterpillar quality, either

through sequestration of plant compounds or reduced

growth, and this then lowered parasitoid abundance

(Singer et al., 2004). We ignore whether higher levels of

phenolic compounds in male plants influenced the

observed pattern by, for example, affecting caterpillar traits

which resulted in reduced parasitoid attraction or perfor-

mance. Other unmeasured physical (e.g., toughness) and

chemical (e.g., terpenoids) defences may also explain plant

sex effects on caterpillar–parasitoid interactions, and their

effects may or may not act in the same manner. For exam-

ple, unmeasured leaf defences could have instead exhibited

lower values in male plants, which would favour faster

caterpillar development and in turn explain reduced

parasitoid recruitment on males (Moreira et al., 2015;
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slow-growth/high-mortality hypothesis; Williams, 1999).

Further work involving controlled measurements of herbi-

vore traits on male and female plants (e.g., developmental

time, growth), including sequestration of plant com-

pounds, as well as measurements of other plant defensive

compounds and floral traits, is necessary to assess the

mechanisms driving the effect of B. cordata sex on para-

sitoids and on caterpillar–parasitoid interactions.
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